Top #10 ❤️ Xem Nhiều Nhất Gen Cấu Trúc Là Gì Mới Nhất 9/2022 ❣️ Top Like | Comforttinhdauthom.com

Sinh Học 12: Gen Và Cấu Trúc Của Gen

Phôi Cá Mút Đá Tái Cấu Trúc Hệ Gen

1 Gen Quy Định Cấu Trúc Của Một Polipeptit

Gen, Mã Di Truyền Và Quá Trình Nhân Đôi Adn, Trắc Nghiệm Hóa Học Lớp 12

Cấu Trúc P53 (Protein), Chức Năng, Chu Kỳ Tế Bào Và Bệnh Tật / Sinh Học

Phát Hiện Gen P53 Kiềm Chế Sự Phát Triển Của Các Tế Bào Ung Thư

Nêu khái niệm và cấu trúc của gen

Gen là một đoạn của phân tử ADN mang thông tin mã hóa cho một sản phẩm xác định (chuỗi pôlipeptit hoặc ARN)

– Ở một số chủng virut, gen có cấu trúc mạch đơn ADN hoặc ARN mạch đơn.

– Ở sinh vật nhân thực, gen có cấu trúc xoắn kép được cấu tạo từ 4 loại nuclêôtit theo nguyên tắc bổ sung.

– Các gen khác nhau có số lượng và trình tự các nuclêôtit khác nhau.

– Mỗi gen mã hóa cho prôtêin điển hình gồm 3 vùng trình tự nuclêôtit. Vùng điều hòa nằm ở đầu 3′ mạch mã gốc của gen mang tín hiệu khởi động và kiểm soát phiên mã. Tiếp theo là vùng mã hóa mang thông tin mã hóa cho các axit amin. Vùng kết thúc nằm ở đầu 5′ mạch mã gốc của gen, mang tín hiệu kết thúc phiên mã.

– Vùng mã hóa có cấu trúc phân mảnh hoặc không phân mảnh tùy thuộc vào sinh vật. Các gen của sinh vật nhân sơ có vùng mã hóa liên tục. Phần lớn các gen của sinh vật nhân thực có vùng mã hóa không liên tục. Xen kẽ giữa các đoạn mã hóa axit amin (exon) là các đoạn không mã hóa axit amin (intron). Các gen như vậy gọi là gen phân mảnh. Số lượng exon và intron của các gen khác nhau là khác nhau.

– Ví dụ ovalbumin của gè có tới 7 intron xen kẻ giữa 8 exon, còn gen beta-globulin lại có 2 intron xen kẽ 3 exon.

Phân biệt gen của nhân sơ và nhân thực, gen trong nhân và ngoài nhân.

– ADN xoắn kép, mạch vòng, trần

– Có gen ngoài nhân là các plasmit.

– ADN xoắn kép, mạch thẳng, liên kết với prôtêin loại histon

– Gen phân mảnh, xen giữa các đoạn exon là đoạn intron

– Gen ngoài nhân là gen trong ti thể và lạp thể. Chỉ mới phát hiện một loại nấm men có plasmit.

Gen trong ti thể và lục lạp của sinh vật nhân thực giống cấu trúc gen của sinh vật nhân sơ.

Plasmit của sinh vật nhân sơ có số lượng lớn, dạng vòng, kích thước nhỏ

Bài 21. Đột Biến Gen

Đột Biến Gen, Trắc Nghiệm Hóa Học Lớp 12

Cấu Trúc Và Bộ Gen Của Hiv

Giải Vở Bài Tập Sinh Học 9

Bài Tập Cấu Trúc Adn (Gen)

Cấu Trúc Và Chức Năng Của Gen

Ankadien Tính Chất Hóa Học, Tính Chất Vật Lý Và Công Thức Cấu Tạo Của Ankadien

Tính Chất Hóa Học, Công Thức Cấu Tạo Của Ankan Và Bài Tập

Cấu Trúc Phân Tử, Đồng Đẳng, Đồng Phân, Liên Kết Đơn, Liên Kết Đôi Trong Hợp Chất Hữu Cơ

Từ Và Cấu Tạo Của Từ Tiếng Việt

Thế Nào Là Chủ Ngữ, Vị Ngữ, Trạng Ngữ, Bổ Ngữ, Định Ngữ

Chúng ta có thể điểm qua những mốc chính trong lịch sử nghiên cứu về gen như sau:

Mendel (1865) là người đầu tiên đưa ra khái niệm nhân tố di truyền. Johansen (1909) đã đề xuất thuật ngữ gen (từ genos, nghĩa là sản sinh, nguồn gốc) để chỉ nhân tố di truyền xác định một tính trạng nào đó. Sau đó, Morgan trong những năm 1920 đã cụ thể hóa khái niệm về gen, khẳng định nó nằm trên nhiễm sắc thể và chiếm một locus nhất định, gen là đơn vị chức năng xác định một tính trạng.

Vào những năm 1940, Beadle và Tatum đã chứng minh gen kiểm tra các phản ứng hóa sinh và nêu giả thuyết một gen-một enzyme. Tuy nhiên, trường hợp hemoglobin là một protein nhưng lại gồm hai chuỗi polypeptide do hai gen xác định, do đó giả thuyết trên buộc phải điều chỉnh lại là một gen-một polypeptide.

Vào những năm 1950, DNA (deoxyribonucleic acid) được chứng minh là vật chất di truyền. Mô hình cấu trúc DNA của Watson và Crick được đưa ra và lý thuyết trung tâm (central dogma) ra đời. Gen được xem là một đoạn DNA trên nhiễm sắc thể mã hóa cho một polypeptide hay RNA.

Cuối những năm 1970, việc phát hiện ra gen gián đoạn ở sinh vật eukaryote cho thấy có những đoạn DNA không mã hóa cho các amino acid trên phân tử protein. Vì thế, khái niệm về gen lại được chỉnh lý một lần nữa: Gen là một đoạn DNA đảm bảo cho việc tạo ra một polypeptide, nó bao gồm cả phần phía trước là vùng 5′ không dịch mã (5′ untranslation) hay còn gọi là vùng ngược hướng (upstream) và phía sau là vùng 3′ không dịch mã (3′ untranslation) hay còn gọi là vùng cùng hướng (downstream) của vùng mã hóa cho protein, và bao gồm cả những đoạn không mã hóa (intron) xen giữa các đoạn mã hóa (exon).

Hiện nay, có thể định nghĩa gen một cách tổng quát như sau: Gen là đơn vị chức năng cơ sở của bộ máy di truyền chiếm một locus nhất định trên nhiễm sắc thể và xác định một tính trạng nhất định. Các gen là những đoạn vật chất di truyền mã hóa cho những sản phẩm riêng lẻ như các mRNA được sử dụng trực tiếp cho tổng hợp các enzyme, các protein cấu trúc hay các chuỗi polypeptide để gắn lại tạo ra protein có hoạt tính sinh học. Ngoài ra, gen còn mã hóa cho các tRNA, rRNA và snRNA…

Cấu trúc không gian của chuỗi polypeptide được xác định bởi trình tự sắp xếp của các amino acid tức cấu trúc bậc một. Như vậy, mặc dù có nhiều mức độ cấu trúc không gian khác nhau, nhưng cấu trúc bậc một tức trình tự sắp xếp các amino acid chi phối toàn bộ các mức độ cấu trúc khác. Việc xác định di truyền phân tử protein ở trạng thái tự nhiên có đầy đủ hoạt tính sinh học chỉ quy tụ lại chủ yếu ở xác định cấu trúc bậc một là đủ.

2. Các enzyme mất hoạt tính do đột biến

Nhiều nghiên cứu cho thấy, việc mất hoạt tính enzyme nhiều khi không phải do vắng mặt của enzyme, mà chỉ do các biến đổi trên phân tử (modification). Có trường hợp đột biến dẫn đến những thay đổi tinh vi, enzyme vẫn có hoạt tính nhưng sẽ biểu hiện khác nếu thay đổi điều kiện. Chẳng hạn:

Ở nấm mốc Neurospora crassa, enzyme tyrosinase do gen T xác định, xúc tác cho phản ứng chuyển hóa tyrosine thành dihydroxyphenylalanine. Alelle T+ của dòng hoang dại sản xuất tyrosinase có hoạt tính ở nhiệt độ bình thường và cả ở 60oC. Một đột biến TS sản xuất tyrosine có hoạt tính ở nhiệt độ bình thường, nhưng lại mất hoạt tính ở 60oC

Như vậy, trong đa số trường hợp, đột biến của một gen không làm biến mất enzyme mà chỉ biến đổi cấu trúc dẫn đến thay đổi hoạt tính. Các đột biến của cùng một gen có thể gây ra những biến đổi khác nhau trên enzyme. Các hiện tượng đó chứng tỏ rằng cấu trúc của enzyme chịu sự kiểm soát trực tiếp của gen.

3. Bản chất các biến đổi di truyền của protein

Bản chất đó chính là quan hệ một gen-một polypeptide. Như đã nêu trên, người ta khám phá ở người có những gen tạo ra hemoglobin (Hb) khi biến dị sẽ tạo ra những hemoglobin bất thường do sai hỏng ở các chuỗi polypeptide α hoặc β (Bảng 3.2 và 3.3) và gây ra các bệnh di truyền.

Đột biến được biểu hiện bởi sự thay thế vị trí của một amino acid này bằng một amino acid khác.

4. Sự tương quan đồng tuyến tính gen-polypeptide

4.1. Đột biến tryptophan synthetase-sự đồng tuyến tính giữa gen và chuỗi polypeptide

Nghiên cứu trên enzyme tryptophan synthetase xúc tác cho phản ứng tổng hợp tryptophan của E. coli người ta nhận thấy có nhiều đột biến xảy ra trên cùng một gen mã hóa cho tryptophan synthetase.

Thực hiện tái tổ hợp trong gen (nguyên tắc là gen ở các vị trí càng xa nhau trên nhiễm sắc thể càng dễ tái tổ hợp), người ta đã nhận được các dạng biến dị có tính chất khác nhau, và tính được khoảng cách tương đối giữa những điểm khác nhau của đột biến đã được xác định. Vị trí biến dị trên thể nhiễm sắc tương ứng với vị trí của amino acid trên chuỗi polypeptide. Như vậy, có thể cho rằng có sự đồng tuyến tính giữa gen và chuỗi polypeptide (Hình 3.1).

Nhiều dạng đột biến của tryptophan synthethase đã được tạo ra. Bằng cơ chế tái tổ hợp, những khoảng cách tương đối giữa những điểm khác nhau của đột biến đã được xác định. Sản phẩm protein của mỗi dạng đột biến đã được phân tích, và những thay đổi các amino acid khác cũng được xác định. Người ta đã tìm thấy mối tương quan hoàn toàn giữa những khoảng cách của các đột biến được tìm thấy trên gen với khoảng cách của amino acid bị thay đổi trong phân tử protein.

4.2. Đột biến

4.2.1. Khái niệm

Một gen (DNA) có 4 loại base và một phân tử protein có 20 loại amino acid1, nhưng giữa chúng có mối tương quan như thế nào. Đầu tiên, người ta cho rằng một base qui định một amino acid, nhưng những tính toán cho thấy không hợp lý. Vì chỉ có 4 base trong DNA và 20 amino acid trong protein, cho nên mỗi codon phải chứa ít nhất 3 base. Hai base cũng không thể làm thành một codon bởi vì chỉ có 42 = 16 cặp hợp lý của 4 base. Nhưng 3 base thì có thể bởi vì sẽ có 43 = 64 bộ ba hợp lý. Vì số lượng bộ ba hợp lý lớn hơn 20, cho nên sẽ có trường hợp một vài codon chỉ định cùng một amino acid. Ví dụ: UCU, UCC, UCA, UCG, AGU và AGC đều cùng mã hóa cho serine.

Từ đó, người ta đưa ra khái niệm mã di truyền (tín hiệu di truyền). Mã di truyền cho phép đọc thứ tự trên DNA để biết thứ tự trên chuỗi polypeptide. Mã di truyền không mơ hồ, có nghĩa với một trình tự chẳng hạn ATA ta biết nó ghi mã cho một amino acid gì, và cũng thấy rằng có nhiều mã di truyền xác định cho một amino acid (Bảng 3.4).

4.2.2. Đột biến điểm

Là đột biến chỉ tác động một vị trí, nói rõ hơn đó là một base. Khi thay đổi một base trên DNA sẽ tạo ra sự thay đổi một amino acid (Hình 3.2).

Đột biến dĩ nhiên xảy ra trên DNA và được sao lại trên mRNA trong phiên mã, rồi trên protein trong dịch mã.

Bảng 3.4. Mã di truyền chung

Những đơn vị mã (codon) được đọc theo chiều 5’→3′.

STOP: codon kết thúc (còn gọi là vô nghĩa).

Đột biến điểm có các dạng sau:

– Đột biến sai nghĩa. Thay đổi một amino acid trong protein, có thể dẫn đến một trong ba kết quả sau:

+ Không hậu quả nào cả, vì amino acid không nằm trong vị trí hoạt động hoặc không có vai trò trong cấu trúc enzyme

+ Có biến đổi nhẹ ở chuỗi polypeptide sẽ tạo ra tính mẫn cảm yếu với nhiệt, làm giảm sự ổn định chuỗi polypeptide

+ Mất hẳn hoạt tính enzyme nếu đúng ngay vị trí hoạt động của enzyme đó.

– Đột biến vô nghĩa. Thay đổi một base. Nếu đó là một codon vô nghĩa sẽ làm ngừng kéo dài (tổng hợp) chuỗi polypeptide ở vị trí amino acid này. Tức là nếu codon này nằm ở đầu sẽ không có chuỗi polypeptide hoạt động.

– Đột biến acridine hoặc đột biến dịch khung. Đột biến này do chất acridine màu da cam tạo ra (hoặc còn gọi là đột biến dịch khung, frameshift, do thêm vào hoặc bớt đi một base) (Hình 3.2 E và D). Như vậy, một đột biến trên khung đọc khi thêm vào (C) hoặc mất đi (A) thường sẽ dẫn đến xuất hiện một codon stop làm ngừng chuỗi polypeptide và enzyme sẽ không có hoạt tính.

4.2.3. Đột biến kìm hãm

Đến nay, người ta nhận thấy mọi sai lệch trong việc tổng hợp protein nếu có đều xảy ra từ DNA, còn quá trình diễn ra từ RNA đến polypeptide luôn luôn đúng. Nghiên cứu một vài kiểu protein đột biến ta thấy:

– Đột biến sai nghĩa. Làm xuất hiện một bất thường trong trình tự amino acid. Kết quả protein mất hoạt tính. Hoạt tính này có thể được phục hồi, hoặc do một đột biến ngược để cho lại protein cấu trúc ban đầu.

– Đột biến vô nghĩa. Làm mất đi một phần chuỗi polypeptide, phần còn lại không có hoạt tính, và hoạt tính này có thể có lại được nhờ đột biến trong một codon đã bị đột biến.

Thông thường, những gen kìm hãm đột biến vô nghĩa không nằm ở gần vị trí của đột biến ấy. Đó là những gen làm biến đổi hệ thống dịch mã khi tổng hợp protein.

5. Lý thuyết trung tâm của sinh học phân tử

Tổng hợp protein trong tế bào có các đặc điểm sau:

– Các phân tử thông tin như nucleic acid và protein được tổng hợp theo khuôn. Tổng hợp theo khuôn vừa chính xác vừa ít tốn enzyme. Tuy nhiên, căn cứ vào hàng loạt tính chất hóa học các protein không thể làm khuôn mẫu cho sự tổng hợp của chính chúng. Vì vậy, khuôn mẫu để tổng hợp nên protein không phải là protein.

– Sinh tổng hợp protein tách rời về không gian với chỗ chứa DNA. Nhiều nghiên cứu cho thấy tổng hợp protein có thể xảy ra khi không có mặt DNA. Sự kiện này thể hiện rõ ràng nhất ở những tế bào eukaryote. Trong những tế bào này, hầu như toàn bộ DNA tập trung ở nhiễm sắc thể trong nhân, còn tổng hợp protein chủ yếu diễn ra ở tế bào chất. Tảo xanh đơn bào Acetabularia khi bị cắt mất phần chứa nhân vẫn tổng hợp được protein và sống vài tháng nhưng mất khả năng sinh sản. Rõ ràng, nơi chứa DNA mang thông tin di truyền và chỗ sinh tổng hợp protein tách rời nhau về không gian.

Hình 3.2. Các dạng đột biến điểm

– DNA không phải là khuôn mẫu trực tiếp để tổng hợp protein, do đó phải có chất trung gian chuyển thông tin từ DNA ra tế bào chất và làm khuôn để tổng hợp protein. Chất đó phải có cả trong nhân và tế bào chất với số lượng phụ thuộc vào mức độ tổng hợp protein.

– Chất trung gian đó được xem chính là RNA nhờ các đặc điểm sau:

+ RNA được tổng hợp ngay ở trong nhân có chứa DNA, sau đó nó đi vào tế bào chất cho tổng hợp protein.

+ Những tế bào giàu RNA tổng hợp protein nhiều hơn.

+ Về phương diện hóa học RNA gần giống DNA: chuỗi polyribo-nucleotide thẳng cũng chứa 4 loại ribonucleotide A, G, C và uracil (U). Nó có thể nhận được thông tin từ DNA qua bắt cặp bổ sung.

Nói chung, trong tế bào không thể tìm thấy chất nào khác ngoài RNA có thể đóng vai trò trung gian cho tổng hợp protein. Mối quan hệ này chính là thông tin di truyền đi từ DNA qua RNA rồi đến protein và được biểu diễn ở hình 3.3. Mối quan hệ này còn được gọi là lý thuyết trung tâm (central dogma), được Crick đưa ra từ 1956 đến nay về căn bản vẫn đúng.

Vào những năm 1970, người ta đã phát hiện quá trình phiên mã ngược từ RNA tổng hợp nên DNA nhờ enzyme reverse transcriptase. Đến nay, việc sao chép (tổng hợp) RNA trên khuôn mẫu RNA cũng đã được chứng minh ở nhiều loại virus. Ngoài ra, thông tin từ protein cũng có thể được truyền sang protein (prion của bệnh bò điên). Riêng dòng thông tin từ protein ngược về mRNA/DNA thì chưa được tìm thấy (Hình 3.4).

6. DNA và mã di truyền

Vấn đề tiếp theo là xác định chính xác các codon nào mã hóa cho từng amino acid. Nirenberg và Matthaei đã sử dụng enzyme để tổng hợp nhân tạo RNA. Khi dùng chỉ một loại nucleotide là U sẽ nhận được RNA là poly(U), nếu chỉ dùng A sẽ nhận được poly(A).

Năm 1961, Nirenberg và Matthaei đã dùng poly(U) thay cho khuôn mẫu mRNA để tổng hợp protein trong hệ thống vô bào (có amino acid, enzyme tổng hợp protein, nhưng không có DNA…), sản phẩm thu được là chuỗi polypeptide polyphenylalanine chỉ chứa một loại amino acid là phenylalanine. Điều đó chứng tỏ codon UUU mã hóa cho phenylalanine. Đây là codon đầu tiên được xác định. Sau đó, họ cũng chứng minh được rằng AAA mã hóa cho lysine, GGG cho glycine và CCC cho proline.

Hình 3.4. Những bổ sung mới vào lý thuyết trung tâm của Crick

Bảng mã di truyền (Bảng 3.4) cho thấy trong 64 codon, có 3 codon UAA, UAG, UGA không mã hóa cho amino acid được gọi là vô nghĩa (non-sense), đồng thời là codon kết thúc (termination) tức dấu chấm câu, chấm dứt chuỗi polypeptide.

Mã di truyền có tính suy biến (degeneration) tức một amino acid có nhiều codon mã hóa, chỉ trừ methionine và tryptophane chỉ có một codon (tương ứng là ATG và TGG). Các codon đồng nghĩa tức mã hóa cho cùng một amino acid thường có hai base đầu tiên giống nhau, nhưng khác nhau ở cái thứ ba. Ví dụ: CCU, CCC, CCA và CCG tất cả đều mã hóa cho proline. Trên thực tế, U và C luôn luôn tương đương nhau ở vị trí thứ ba, còn A và G tương đương nhau trong 14 trên 16 trường hợp.

Trừ một số ngoại lệ, mã di truyền có tính phổ biến (universal) tức toàn bộ thế giới sinh vật có chung bộ mã di truyền.

Khi nghiên cứu các quy luật di truyền Mendel và học thuyết di truyền nhiễm sắc thể, gen được quan niệm như một điểm trên nhiễm sắc thể, vừa là đơn vị chức năng xác định một tính trạng, vừa là đơn vị đột biến, vừa là đơn vị tái tổ hợp. Cùng với sự phát triển của di truyền học, khái niệm về gen được cụ thể hóa thêm, cấu trúc và chức năng của gen được hiểu chi tiết hơn.

1. Cấu trúc gen

Hoạt động của một gen được đánh giá thông qua quá trình phiên mã (tổng hợp mRNA) và quá trình dịch mã (tổng hợp protein). Hoạt động này được kiểm soát rất chặt chẽ bằng các cơ chế khác nhau ở mọi giai đoạn, như bắt đầu và kết thúc phiên mã, quá trình biến đổi mRNA, quyết định tính bền vững và kiểm tra lại thông tin di truyền trên các phân tử này… Do cấu trúc sắp xếp các gen prokaryote khác với gen eukaryote nên sự phối hợp giữa các cơ chế điều khiển mang tính chất riêng biệt cho từng loại genome.

Các gen prokaryote thường sắp xếp nằm gần nhau và chịu sự điều khiển chung của một promoter, tức là chúng được phiên mã sang cùng một phân tử mRNA. Cấu trúc này được gọi là operon. Như vậy, một operon gồm hai hay nhiều gen nằm cạnh nhau trên một nhiễm sắc thể. Thông thường, đó là các gen cùng tham gia vào một con đường chuyển hóa, ví dụ như các gen mã hóa cho các enzyme cần thiết cho quá trình chuyển hóa glucose.

Do có chung promoter điều khiển cho mọi gen nằm trong một operon cho nên chỉ có một loại phân tử mRNA được tổng hợp từ một operon (mang thông tin di truyền của tất cả các gen nằm trong đó). Nói cách khác, quá trình phiên mã của các gen trong một operon xảy ra đồng thời và phân tử mRNA đặc trưng cho operon được gọi là mRNApolycistron.

Tuy nhiên, điều cần ghi nhớ là quá trình dịch mã trên các phân tử mRNApolycistron xảy ra hoàn toàn độc lập với nhau. Mỗi đoạn tương ứng với một gen trên phân tử này đều có vị trí bám của ribosome, có mã bắt đầu và kết thúc tổng hợp chuỗi polypeptide riêng biệt. Do đó, tốc độ tổng hợp các protein trên các phân tử mRNApolycistron hoàn toàn khác nhau (Hình 3.6).

Khái niệm locus được đưa ra để chỉ vị trí của gen trên nhiễm sắc thể, là vị trí của tất cả các allele của dãy đa allele. Bản thân hiện tượng đa allele cho thấy gen có cấu tạo phức tạp, sự biến đổi của gen có thể dẫn đến nhiều trạng thái allele khác nhau.

2.1. Hiện tượng allele giả

Theo quan niệm cổ điển gen là đơn vị tái tổ hợp. Nếu cá thể mang hai allele lặn a1/a2 của một dãy đa allele sẽ tạo thành hai loại giao tử là a1 và a2, lai phân tích với bố mẹ đồng hợp tử lặn sẽ chỉ cho kiểu hình đột biến a1 và a2 mà không có dạng tái tổ hợp hoang dại. Ví dụ:

Hình 3.6. Cấu trúc operon trong genome vi khuẩn. Một operon là một đơn vị phiên mã đơn bao gồm một chuỗi các gen cấu trúc (structural genes), một promoter và một operator.

Ví dụ: Trường hợp locus mắt quả trám ở ruồi giấm, có 18 allele. Khi tăng số cá thể nghiên cứu lên nhiều lần, người ta phát hiện các allele xếp thành 3 nhóm A, B và C. Các allele của cùng một nhóm, khi lai lẫn nhau, không cho kiểu hình tái tổ hợp hoang dại mắt bình thường, mà chỉ có kiểu hình mắt quả trám. Nhưng lai allele của nhóm này với allele của nhóm khác sẽ có xuất hiện kiểu hình hoang dại do tái tổ hợp. Hiện tượng này được gọi là allele giả.

Hiện tượng allele giả cho thấy gen phân chia nhỏ về mặt tái tổ hợp, có thể xảy ra tái tổ hợp giữa các phần trong gen. Lúc đầu, hiện tượng allele giả được coi là trường hợp ngoại lệ, nhưng khi tăng số cá thể nghiên cứu lên nhiều lần thì rõ ràng đó là hiện tượng phổ biến. Nó được tìm thấy ở nhiều đối tượng khác nhau như nấm men S. cerevisiae, ngô, bồ câu, chuột, bacteriophage

2.2. Locus rII của bacteriophage T4

Nghiên cứu chi tiết về các đột biến rII của bacteriophage T4 đã làm sáng tỏ hơn về cấu trúc gen. Bacteriophage T4 ở dạng hoang dại r+ có khả năng xâm nhiễm đồng thời hai chủng E. coli B và K, trong khi các đột biến rII chỉ xâm nhiễm chủng B mà không xâm nhiễm chủng K (Hình 3.7).

Trước thí nghiệm của ông, rII được coi là một locus. Tuy nhiên, thí nghiệm của ông đã cho thấy các đột biến xếp thành hai nhóm rIIA và rIIB. Lai các đột biến rIIA × rIIB sẽ có r+, nhưng lai rIIA × rIIA và rIIB × rIIB thì kiểu hình đột biến là r.

Cho đến nay, chúng ta định nghĩa một gen là nhờ dựa trên kiểu hình đột biến và vị trí trên bản đồ của nó. Bacteriophage là một mô hình di truyền đơn giản (genome của E. coli dài khoảng 4.600.000 bp, trong khi bacteriophage T4 là 165.000 bp và bacteriophage λ khoảng 46.500 bp), chúng có thể sinh sản một số lượng lớn rất nhanh (1010 hoặc hơn thế) và dễ dàng phân tích. Các thí nghiệm thực hiện với đột biến rII của T4 được thiết lập dựa trên cơ sở sau:

– Các gen có một phạm vi và ranh giới hạn chế.

– Các gen có thể chia được, có thể có sự tái tổ hợp giữa hai allele trong một gen đơn.

– Hoạt động của gen có thể được phân tích bởi sự phân tích bổ sung.

Kết quả thí nghiệm cho thấy, gen có thể phân chia nhỏ về mặt đột biến. Các đoạn rIIA và rIIB được gọi là cistron, đơn vị chức năng nhỏ nhất đảm bảo khả năng xâm nhiễm chủng K. Thuật ngữ cistron thực chất là gen, ngày nay nó chỉ có tính chất lịch sử, ít được sử dụng. Theo quan niệm hiện nay, rIIA và rIIB là hai locus. Hai khái niệm mới được đưa ra là muton-đơn vị đột biến và recon-đơn vị tái tổ hợp.

Benzer đã tìm thấy 2.000 điểm đột biến trên đoạn gen được nghiên cứu, chúng phân bố không đều nhau, có những điểm tập trung nhiều đột biến hơn. Chiều dài gen khoảng 900 nucleotide. Đơn vị đột biến muton ở đây tương ứng với 900/2.000. Số đột biến ghi nhận có thể thấp hơn so với thực tế nên muton có thể tương ứng với một cặp nucleotide. Giống như vậy recon có thể tương ứng với một cặp nucleotide.

Tóm lại, gen là đơn vị chức năng, có thể chia nhỏ bởi các đơn vị đột biến tái tổ hợp.

Hình 3.7. Kiểu hình của các đột biến rII của phage T4

3. Thử nghiệm chức năng allele

Muốn nghiên cứu cấu trúc bên trong một gen, phải tìm hiểu nhiều allele của gen đó. Nhiều đột biến có kiểu hình giống nhau nhưng không allele với nhau. Thử nghiệm chức năng allele được sử dụng để xác định xem hai đột biến có allele với nhau không. Đây chính là thử nghiệm mà Benzer dùng để lập bản đồ locus rII.

Thử nghiệm này còn được gọi là thử nghiệm bổ sung (complementary test) vì nó cho biết sai hỏng chức năng ở hai đột biến có bổ sung tức bù trừ cho nhau được không.

Phương pháp thử này cũng được gọi là thử nghiệm đều-lệch (cis-trans test). Sở dĩ như vậy là vì phép thử nghiệm này so sánh hiệu quả kiểu hình của các gen đột biến ở hai vị trí khác nhau trên nhiễm sắc thể tương đồng. Ở vị trí lệch (trans) các đột biến nằm trên hai nhiễm sắc thể, còn ở vị trí đều (cis) các đột biến nằm trên cùng một nhiễm sắc thể. Trường hợp sai hỏng ở hai gen khác nhau nên có thể bổ sung được, còn trường hợp sai hỏng ở cùng một gen không bù đắp được sẽ dẫn đến kiểu hình đột biến.

Thử nghiệm chức năng allele có thể được thực hiện dễ dàng trên các đối tượng vi sinh vật với các đột biến hóa sinh, thường là các đột biến khuyết dưỡng (auxotroph mutant: mất khả năng tổng hợp một chất nào đó). Ví dụ: Ở nấm mốc Neurospora crassa có nhiều đột biến mất khả năng tổng hợp adenine (Ade-). Các đột biến này dễ phát hiện vì có khuẩn lạc màu đỏ. Có hai dạng đột biến Adex và Adey, nếu dị hợp tử Adex/Adey có kiểu hình đột biến tức là cho khuẩn lạc màu đỏ, thì Adex và Adey là hai allele của một gen. Thử nghiệm chức năng allele cho thấy các đột biến Ade ở N. crassa tạo thành 9 nhóm. Điều đó chứng tỏ có 9 gen tổng hợp adenine ở loài nấm này: ade1, ade2, ade3… trong đó ade3 có hai locus nằm kề sát nhau là ade3A và ade3B (Hình 3.9).

Hình 3.8. Thử nghiệm chức năng allele. I: có kiểu hình đột biến do sai hỏng cùng một gen nên không bù đắp được. II: có kiểu hình hoang dại do sai hỏng khác gen nên bù trừ được cho nhau. Hình 3.9. Vị trí các gen ade trên các nhiễm sắc thể của nấm mốc Neurospora crassa Nguồn: Giáo trình Sinh học phân tử – Nguyễn Hoàng lộc (chủ biên)

Hộp Gen Là Gì? Kích Thước Hộp Gen (Hộp Kỹ Thuật) Nhà Vệ Sinh Chuẩn

Khái Niệm, Cấu Trúc Và Phân Loại Gen

Định Nghĩa Từ Láy Là Gì? Từ Ghép Là Gì

Từ Ghép Là Gì? 3 Cách Phân Biệt Từ Ghép, Từ Láy Nhanh Và Dễ Hiểu Nhất

Từ Ghép Là Gì? Các Loại Từ Ghép

Gen Z Là Gì? Thế Hệ Gen Z Có Gì Đặc Biệt

5 Đặc Điểm Nhận Diện Của Nhân Viên Thế Hệ Gen Z

Gen Z Là Gì? 10 Đặc Điểm Để Giúp Xác Định Thế Hệ Gen Z

Một Thế Hệ Có Ý Thức

Công Thức – Tính Chất Hình Thoi Và Dấu Hiệu Nhận Biết Hình Thoi

Đặc Điểm Hợp Tác Xã Theo Quy Định Pháp Luật Hiện Hành

Gen Z là gì?

Gen Z (Thế hệ Z) hay còn gọi với các tên gọi khác là Gen Tech, Gen Wii, Digital Natives, Neo-Digital Natives, Net Gen, Plurals, Zoomers, thế hệ Internet, Generation Z, iGen, iGeneration, Founders, Post millennials, Homeland Generation hay hậu Millennials,… là những cụm từ ám chỉ đến nhóm người sinh ra từ năm 1995 đến năm 2012 (một số khác cho rằng từ 1997 đến 2022), thế hệ trẻ đến tuổi trưởng thành trong thập kỷ thứ 2 của thế kỷ 21.

Gen Z là gì? Thế hệ Z là gì?

Phần lớn thế hệ Z là con cái của thế hệ X (sinh ra từ năm 1965 đến 1979), thế hệ Z là nhóm kế tiếp sau thế hệ Millennials (Gen Y) và trước thế hệ Alpha (α).

Trên thế giới, Gen Z có khoảng 2,6 tỷ người trên toàn thế giới, chiếm khoản ⅓ dân số.

Tại Việt Nam, Gen Z đang chiếm khoảng 25% lực lương lao động quốc gia, tương đương với khoảng 15 triệu người.

Xuất xứ của tên gọi Gen Z

Thế hệ Gen Z có đặc điểm gì đặc biệt?  

Đặc điểm của thế hệ Gen Z

Hầu hết các thành viên thuộc thế hệ Z đều được tiếp xúc và sử dụng công nghệ từ nhỏ, nên họ cảm thấy rất thoải mái, rất dễ đón nhật với công nghệ, di động, Internet và các phương tiện truyền thông xã hội, từ Facebook, Google, Youtube, Instagram,… thế hệ Z đều có thể sử dụng và tìm kiếm thông tin nhanh chóng, không tốn nhiều công sức, nhưng không nhất thiết là phải có trình độ kỹ thuật số cao, khác với thế hệ Y, phần lớn nếu là người tiếp xúc và am hiểu về kỹ thuật số thường có trình độ chuyên môn cao.

Thế hệ Gen Z có gì đặc biệt

Thế hệ Z (Gen Z) được được mệnh danh là những công dân của thời đại số hoá, là thế hệ mới đang thay đổi cả thế giới, họ quyết định văn hóa, xu hướng tiêu dùng của tương lai, điều này mang ý nghĩa về kinh tế và xã hội sâu sắc, bởi họ chính là nhân tố quyết định của tương lai gần.

Thế hệ Z (Gen Z) có rất nhiều đặc điểm đặc biệt

Gen Z là những người đầu tiên được tiếp cận với công nghệ từ khi còn bé và có tư duy về tiền tệ, kinh tế có thể thay đổi cả thế giới trong tương lai, bởi sự đa dạng, thông thạo công nghệ và thái độ bảo thủ của họ đối với tiền bạc, chi tiêu. Gen Z chính là “thuyền trưởng” trong công cuộc thay đổi và xây dựng thế giới phát triển trong tương lai, trong thời kỳ mới.

Phong cách thời trang ưa chuộng của thế hệ Gen Z

Thế hệ Z được sinh ra ngay sau thế hệ Y, có sự chuyển biến của những người cuối thế hệ Y, tiếp nhận sự thoải mãi trong ăn mặc của thế hệ này, đây là những bạn trẻ sinh ra trong một thế giới công nghệ và hiện đại hóa trong cả văn hóa sống, họ dễ dàng tiếp nhận những trang phục lạ mắt, khác người.

Phong cách thời trang đậm chất thoải mãi được ưa chuộng trong thế hệ Gen Z

Đơn cử là những trang phục khoe cơ thể như áo crop top, áo hai dây, quần đùi ngắn hay váy ngắn,… đều là những trang phục không quá xa lạ, và quá đối quen thuộc với thế hệ này.

Phong cách thời trang được ưa chuộng của thế hệ Gen Z là những trang phục có phần cá tính, pha chút sexy đối với các bạn gái, đối với nam giới là những trang phục năng động, thoải mái, đậm chất streetwear.

Những thế khác ngoài thế hệ Gen Z

Ngoài thế hệ thế hệ Z (Generation Z, iGen, iGeneration, Post-millennials, Homeland Generation hay Gen Z), những người sinh ra từ năm 1995 đến 2012, còn có những thế hệ khác với các tên gọi như:

Thế hệ Alpha (α): Đây là nhóm người sinh ra từ năm 2013 đến 2025

Thế hệ Millennials (Thế hệ Echo Boomers, Gen Next,hay Gen Y) được biết đến như những người sinh ra từ năm 1980 đến năm 1994

Thế hệ Xennials (Thế hệ vi mô, Oregon Trail hay Catalano): Đây là nhóm người sinh ra từ năm 1975 đến 1985

Thế hệ X (Generation X, Baby Bust, Latchkey, thế hệ MTV hay Gen X): Đây là nhóm người sinh ra từ năm 1965 đến 1979

Thế hệ Baby Boomer (Thế hệ bùng nổ dân số): Đây là nhóm người sinh ra từ năm 1946 đến 1964

Thế hệ Silent (Thế hệ im lặng): Đây là nhóm người sinh ra từ năm 1925 đến 1945

Thế hệ The Greatest  (Thế hệ vĩ đại nhất): Đây là nhóm người sinh ra từ năm 1910 đến 1924

Thế hệ The Interbellum (Thế hệ giữa chiến tranh): Đây là nhóm người sinh ra từ năm 1901 đến 1913

Thế hệ The Lost (Thế hệ đã mất, thế hệ lạc lõng): Đây là nhóm người sinh ra từ năm 1890 đến 1915.

Lời kết

Gà Ri Có Nguồn Gốc Từ Đâu Hình Ảnh Và Đặc Điểm Chi Tiết

Sứ Mệnh Lịch Sử Của Giai Cấp Công Nhân Và Giáo Dục Sứ Mệnh

Đặc Điểm Của Vốn Fdi – Hỗ Trợ, Tư Vấn, Chắp Bút Luận Án Tiến Sĩ

Thực Thi Các Fta Thế Hệ Mới Giúp Việt Nam Tiếp Cận Tiêu Chuẩn Quốc Tế, Nâng Cao Năng Lực Quản Lý

Tổng Quan Về Các Fta Thế Hệ Mới

Rối Loạn Tổng Hợp Protein Do Gen Cấu Trúc Và Gen Điều Hòa

Phương Pháp Giải Dạng Bài Tập Tính Số Liên Kết Hóa Học Trong Cấu Trúc Của Gen Sinh Học 12

Thiền Giúp Thay Đổi Cấu Trúc Gen Gây Đau Nhức

Sinh Học 12/điều Hòa Hoạt Động Gen

Sinh Học 12/gen, Mã Di Truyền Và Quá Trình Nhân Đôi Adn

Xét Nghiệm Gen Và Những Ý Nghĩa Quan Trọng Trong Y Học

Công trình nghiên cứu về vai trò của acid nucleic trong sinh tổng hợp protid của Watson và crick: khái niệm về đơn vị operon của Jacob và monod tr5ong điều hòa tổng hợp protid đã làm sang tỏ 2 đặc trưng cơ bản của mỗi protid

Đặc trưng về cấu trúc:Mỗi phân tử protid của cơ thể có 1 số lượng và trình tự các acid amin nhất định trong phân tử polypeptide do gen cấu trúc đảm nhiệm. Nếu có sai sót ở một điểm( hoặc một đoạn gen nào đó) trong gen cấu trúc thì lập tức thứ tự các acid amin trong phân tử polypeptid sẽ bị sai lạc, thậm chí đảo lộn. Phân tử polypeptide mới này có thể mất chức năng cũ, hoặc có them chức năng mới( hầu hết có hại đôi khi có lợi) cho cơ thể. Đây là cách chọn lọc tiến hóa của sinh giới nhưng cũng gây ra nhiều vấn đề cho y học.

ĐẶc trưng về số lượng: mỗi loại protid của cơ thể đều có một lượng nhất định do gen điều hòa quy định. Nếu chức năng này có sai sót sẽ dẫn đến việc tổng hợp quá dư thừa hoặc thiếu một protid nào đó.

Rối loạn sinh tổng hợp protein do gen cấu trúc và gen điều hòa

Rối loạn gen cấu trúc:

Bệnh lý do gen cấu trúc thường bẩm sinh. Bệnh sai sót cấu trúc protein được phát hiện đầu tiên là những bệnh của Hb:

Các bệnh rối loạn cấu trúc Hb:

+ bệnh thiếu máu hồng cầu hình lưỡi liềm:

+ bệnh thiếu máu HC hình bia:

Bệnh do thiếu enzyme trong chuỗi chuyển hóa:

+ bệnh bạch tạng:

+bệnh ứ đọng glycogen ở gan:

+bệnh oxalat niệu:

Do thiếu Glycintransaminase

+bệnh alkapton niệu:

Do thiếu homogentisicase

Bệnh bẩm sinh thiếu γ globulin, thiếu các yếu tố đông máu.

Rối loạn gen điều hòa

Gen điều hòa ức chế (hay cho phép) gen cấu trúc tổng hợp 1 lượng protid thích hợp, ở thời điểm thích hợp, phù hợp với nhu cầu cơ thể.

Bệnh HST F (Thalassemia):

Nếu HbF vẫn tồn tại với lượng lớn ở người trưởng thành là bệnh lý (bệnh Cooley): gen điều hòa không kìm hãm nổi gen cấu trúc của chuỗi γ.

Bệnh HST Bart:

4 chuỗi peptid của HST đều là γ (γ4)

Bệnh HST H:

4 chuỗi đều là β (β4)

Bệnh có nhiều porphyrin trong phân và nước tiểu:

copy ghi nguồn : daihocduochanoi.com

Link tại : Rối loạn sinh tổng hợp protein do gen cấu trúc và gen điều hòa

Bai 1 : Gen,mã Di Truyền ,nhân Đôi Adn Bai1 Ppt

Một Gen Cấu Trúc Có 4050 Liên Kết Hydro, Hiệu Số Giữa Nu Loại G Với Loại Nu Khác Chiếm 20%. Sau Đột Biến Chiều Dài Gen K?

Chức Năng Và Cấu Trúc Của Gen

26 Câu Đột Biến Gen Sinh Học 12 Bài 4 Có Đáp Án File Word

Trường Hợp Gen Cấu Trúc Bị Đột Biến Thay Thế 1 Cặp G

🌟 Home
🌟 Top