Top 17 # Xem Nhiều Nhất Cấu Tạo Fet / 2023 Mới Nhất 12/2022 # Top Like | Comforttinhdauthom.com

Cấu Tạo Và Nguyên Lý Hoạt Động Của Transistor Trường Fets / 2023

Cấu tạo và nguyên lý hoạt động của transistor trường FETs

Transistor trường JFET

Cấu tạo transistor trường JFET

JFET được cấu tạo bởi 1 miếng bán dẫn mỏng ( loại N hoặc loại P ) 2 đầu tương ứng là D và S, miếng bán dẫn này được gọi là kênh dẫn điện. 2 miếng bán dẫn ở 2 bên kênh dẫn được nối với cực G. Cực G được tách ra khỏi kênh nhờ tiếp xúc N-P. Đa phần các JFET có cấu tạo đối xứng nên có thể đổi chỗ cực D và S mà tính chất không thay đổi. Nguyên lý hoạt động của transistor trường JFET

Sơ đồ mạch của 2 loại JFET Xét JFET kênh N:

+ Điện áp VGG đặt tới cực G và S để phân cực ngược cho tiếp giáp P-N. Điện áp VDD đặt tới D và S để tạo ra dòng điện chạy trong kênh dẫn. + Điện áp phân cực ngược đặt tới G và S làm cho vùng nghèo dọc theo tiếp giáp P-N được mở rộng ra chủ yếu về phía kênh dẫn, điều này làm kênh hẹp lại hơn do đó điện trở kênh dẫn tăng lên và dòng qua kênh dẫn giảm đi. Với cách phân cực trên thì điện áp phân cực giữa G và D lớn hơn điện áp phân cực ngược giữa G và S làm cho vùng nghèo mở rộng không đều. Các bạn xem hình:

Ở đây, Đặc điểm hoạt động của JFET *Đặc tuyến ra: Xét trường hợp JFET phân cực với điện áp VGG=0

+ Khi VDD đã đủ lớn, khi đó VDS cũng đủ lớn, lúc này bề rộng vùng nghèo bắt đầu gây ảnh hưởng dòng ID. Nó kiềm hãm sự tăng của dòng ID trước sự tăng của VDS. Mối quan hệ này thể hiện ở đặc tuyến ra B → C (Miền không đổi) + Khi VDD tiếp tục tăng đến giá trị đủ lớn để đánh thủng tiếp giáp P-N thì ID tăng đột ngột theo VDS, miền này gọi là miền đánh thủng; JFET làm việc ở chế độ này sẽ bị hỏng. *Đặc tuyến truyền đạt:

Đường cong này chính là đặc tuyến truyền đạt của JFET kênh N, cho ta biết giới hạn hoạt động của JFET.

Qua đồ thị này ta có thể thấy được FET là một tuân theo luật bình phương.

Transistor trường MOSFET

Đây là loại transistor trường có cực cửa cách điện với kênh dẫn điện bằng một lớp cách điện mỏng. Lớp cách điện thường dùng là chất oxit nên ta thường gọi tắt là transistor trường loại MOS. Transistor trường MOS có hai loại: transistor MOSFET kênh sẵn và transistor MOSFET kênh cảm ứng. Trong mỗi loại MOSFET này lại có hai loại là kênh dẫn loại P và kênh loại N. Chúng ta sẽ đi vào phân tích từng loại MOSFET này. MOSFET kênh sẵn *Cấu tạo của MOSFET kênh sẵn + Transistor trường MOSFET kênh sẵn còn gọi là MOSFET-chế độ nghèo (viết tắt là DE-MOSFET). + Transistor trường MOSFET kênh sẵn là loại transistor mà khi chế tạo người ta đã chế tạo sẵn kênh dẫn.

*Nguyên lý hoạt động của MOSFET kênh sẵn + Khi transistor làm việc, thông thường cực nguồn S được nối với đế và nối đất nên US=0. + Các điện áp đặt vào các chân cực cửa G và cực máng D là so với chân cực S. + Nguyên tắc cung cấp nguồn điện cho các chân cực sao cho hạt dẫn đa số chạy từ cực nguồn S qua kênh về cực máng D để tạo nên dòng điện ID trong mạch cực máng. + Còn điện áp đặt trên cực cửa có chiều sao cho MOSFET làm việc ở chế độ giàu hạt dẫn hoặc ở chế độ nghèo hạt dẫn. + Nguyên lý làm việc của hai loại transistor kênh P và kênh N giống nhau chỉ có cực tính của nguồn điện cung cấp cho các chân cực là trái dấu nhau.

a/MOSFET kênh sẵn loại P b/ MOSFET kênh sẵn loại N + Đặc tính truyền đạt: ID = f(UGS) khi UDS = const MOSFET kênh cảm ứng *Cấu tạo của MOSFET kênh cảm ứng + Transistor trường loại MOSFET kênh cảm ứng còn gọi là MOSFET chế độ giàu (Enhancement-Mode MOSFET viết tắt là E-MOSFET). + Khi chế tạo MOSFET kênh cảm ứng người ta không chế tạo kênh dẫn.

+ Do công nghệ chế tạo đơn giản nên MOSFET kênh cảm ứng được sản xuất và sử dụng nhiều hơn. *Nguyên lý hoạt động của MOSFET kênh cảm ứng + Trước tiên, nối cực nguồn S với đế và nối đất, sau đó cấp điện áp giữa cực cửa và cực nguồn để tạo kênh dẫn. + Theo nguyên tắc cấp nguồn điện cho các chân cực, ta cấp nguồn điện UGS < 0 để tạo kênh, còn UDS < 0 để tác động cho các lỗ trống chuyển động từ cực nguồn về cực máng tạo nên dòng điện ID. + Khi ta đặt một điện áp lên cực cửa âm hơn so với cực nguồn (UGS < 0) đến một giá trị gọi là điện áp ngưỡng (ký hiệu là UGSth) thì một số các lỗ trống được hút về tạo thành một lớp mỏng các lỗ trống trên bề mặt của lớp bán dẫn đế Si(N), nối liền cực nguồn S với cực máng D và kênh dẫn điện được hình thành.

Kết luận

Tìm Hiểu Về Transistor Trường Fets / 2023

Transistor trường FETs

Giới thiệu chung và phân loại transistor trường FETs

Transistor trường FETs là gì?

Transistor trường IRF730 – linh kiện điện tử Vietnic

So sánh FETs với BJTs

Như các bạn đã biết, hiện nay trên thị trường có 2 loại transistor chính: BJT và FET. Vậy so với BJTs thì FETs có những ưu nhược điểm gì? Và BJTs với FETS giống và khác nhau ở điểm nào? Việc trả lời câu hỏi này sẽ giúp bạn dễ dàng hơn trong việc chọn mua loại transistor cho phù hợp với mục đích sử dụng của mình.

Ưu, nhược điểm của FETs so với BJTs

Ưu điểm

+ Dòng điện qua transistor chỉ do một loại hạt dẫn đa số tạo nên. Do vậy FET là loại cấu kiện đơn cực (unipolar device).

+ FET có trở kháng vào rất cao.

+ Tiếng ồn trong FET ít hơn nhiều so với transistor lưỡng cực.

+ Nó không bù điện áp tại dòng ID = 0 và do đó nó là cái ngắt điện tốt.

+ Có độ ổn định về nhiệt cao.

+ Tần số làm việc cao.

Nhược điểm

Hệ số khuếch đại của FETs thấp hơn nhiều so với BJTs.

FETs và BJT giống và khác nhau ở điểm nào?

Giống nhau

+ Đều được sử dụng để làm bộ khuếch đại.

+ Đều được sử dụng làm thiết bị đóng ngắt bán dẫn.

+ Đều có thể thích ứng với những mạch trở kháng.

Khác nhau

+ BJTs phân cực bằng dòng, còn FETs phân cực bằng điện áp.

+ BJTs có hệ số khuếch đại cao, FETs có trở kháng vào lớn.

+ FETs ít nhạy cảm với nhiệt độ, nên thường được sử dụng trong các IC tích hợp.

+ Trạng thái ngắt của FETs tốt hơn so với BJTs.

Phân loại transistor trường FET

Có 2 loại transistor trường FET:

+ JPET (Junction field-effect transistor): Transistor trường điều khiển bằng tiếp xúc P-N hay còn gọi là transistor trường mối nối.

+ IGFET (Insulated-gate field effect transistor): Transistor có cực cửa cách điện. Thông thường lớp cách điện này là lớp oxit nên còn gọi là metal-oxide-semicoductor transistor (viết tắt là MOSFET).Trong loại transistor trường có cực cửa cách điện được chia làm 2 loại là MOSFET kênh sẵn (DE-MOSFET) và MOSFET kênh cảm ứng (E-MOSFET).

Mỗi loại FET lại được phân chia thành loại kênh N và loại kênh P.

Để dễ hiểu các bạn có thể xem sơ đồ sau:

Sơ đồ phân loại FETs

Kí hiệu của các loại transistor trường FET

Cấu tạo và nguyên lý hoạt động của transistor trường FETs

Transistor trường JFET

Cấu tạo transistor trường JFET

JFET được cấu tạo bởi 1 miếng bán dẫn mỏng ( loại N hoặc loại P ) 2 đầu tương ứng là D và S, miếng bán dẫn này được gọi là kênh dẫn điện. 2 miếng bán dẫn ở 2 bên kênh dẫn được nối với cực G. Cực G được tách ra khỏi kênh nhờ tiếp xúc N-P.

Đa phần các JFET có cấu tạo đối xứng nên có thể đổi chỗ cực D và S mà tính chất không thay đổi.

*Có 2 loại JFET : kênh n và kênh P.

JFET kênh n thường thông dụng hơn.

JFET có 3 cực: cực Nguồn S (source); cực Cửa G (gate); cực Máng D (drain).

+ Cực D và cực S được kết nối vào kênh n.

+ Cực G được kết nối vào vật liệu bán dẫn p

Các loại JFET – linh kiện điện tử Vietnic

Nguyên lý hoạt động của transistor trường JFET

Sơ đồ mạch của 2 loại JFET

Xét JFET kênh N:

+ Điện áp VGG đặt tới cực G và S để phân cực ngược cho tiếp giáp P-N. Điện áp VDD đặt tới D và S để tạo ra dòng điện chạy trong kênh dẫn.

+ Điện áp phân cực ngược đặt tới G và S làm cho vùng nghèo dọc theo tiếp giáp P-N được mở rộng ra chủ yếu về phía kênh dẫn, điều này làm kênh hẹp lại hơn do đó điện trở kênh dẫn tăng lên và dòng qua kênh dẫn giảm đi. Với cách phân cực trên thì điện áp phân cực giữa G và D lớn hơn điện áp phân cực ngược giữa G và S làm cho vùng nghèo mở rộng không đều. Các bạn xem hình:

Đặc điểm hoạt động của JFET

*Đặc tuyến ra:

Xét trường hợp JFET phân cực với điện áp VGG=0

+ Khi VDD đã đủ lớn, khi đó VDS cũng đủ lớn, lúc này bề rộng vùng nghèo bắt đầu gây ảnh hưởng dòng ID. Nó kiềm hãm sự tăng của dòng ID trước sự tăng của VDS. Mối quan hệ này thể hiện ở đặc tuyến ra B → C (Miền không đổi)

+ Khi VDD tiếp tục tăng đến giá trị đủ lớn để đánh thủng tiếp giáp P-N thì ID tăng đột ngột theo VDS, miền này gọi là miền đánh thủng; JFET làm việc ở chế độ này sẽ bị hỏng.

*Đặc tuyến truyền đạt:

Đường cong này chính là đặc tuyến truyền đạt của JFET kênh N, cho ta biết giới hạn hoạt động của JFET.

Qua đồ thị này ta có thể thấy được FET là một linh kiện điện tử tuân theo luật bình phương.

Transistor trường MOSFET

Đây là loại transistor trường có cực cửa cách điện với kênh dẫn điện bằng một lớp cách điện mỏng. Lớp cách điện thường dùng là chất oxit nên ta thường gọi tắt là transistor trường loại MOS.

Transistor trường MOS có hai loại: transistor MOSFET kênh sẵn và transistor MOSFET kênh cảm ứng. Trong mỗi loại MOSFET này lại có hai loại là kênh dẫn loại P và kênh loại N.

Chúng ta sẽ đi vào phân tích từng loại MOSFET này.

MOSFET kênh sẵn

*Cấu tạo của MOSFET kênh sẵn

+ Transistor trường MOSFET kênh sẵn còn gọi là MOSFET-chế độ nghèo (viết tắt là DE-MOSFET).

+ Transistor trường MOSFET kênh sẵn là loại transistor mà khi chế tạo người ta đã chế tạo sẵn kênh dẫn.

*Nguyên lý hoạt động của MOSFET kênh sẵn

+ Khi transistor làm việc, thông thường cực nguồn S được nối với đế và nối đất nên US=0.

+ Các điện áp đặt vào các chân cực cửa G và cực máng D là so với chân cực S.

+ Nguyên tắc cung cấp nguồn điện cho các chân cực sao cho hạt dẫn đa số chạy từ cực nguồn S qua kênh về cực máng D để tạo nên dòng điện ID trong mạch cực máng.

+ Còn điện áp đặt trên cực cửa có chiều sao cho MOSFET làm việc ở chế độ giàu hạt dẫn hoặc ở chế độ nghèo hạt dẫn.

+ Nguyên lý làm việc của hai loại transistor kênh P và kênh N giống nhau chỉ có cực tính của nguồn điện cung cấp cho các chân cực là trái dấu nhau.

a/MOSFET kênh sẵn loại P

b/ MOSFET kênh sẵn loại N

+ Đặc tính truyền đạt: ID = f(UGS) khi UDS = const

MOSFET kênh cảm ứng

*Cấu tạo của MOSFET kênh cảm ứng

+ Transistor trường loại MOSFET kênh cảm ứng còn gọi là MOSFET chế độ giàu (Enhancement-Mode MOSFET viết tắt là E-MOSFET).

+ Khi chế tạo MOSFET kênh cảm ứng người ta không chế tạo kênh dẫn.

+ Do công nghệ chế tạo đơn giản nên MOSFET kênh cảm ứng được sản xuất và sử dụng nhiều hơn.

*Nguyên lý hoạt động của MOSFET kênh cảm ứng

+ Trước tiên, nối cực nguồn S với đế và nối đất, sau đó cấp điện áp giữa cực cửa và cực nguồn để tạo kênh dẫn.

+ Theo nguyên tắc cấp nguồn điện cho các chân cực, ta cấp nguồn điện UGS < 0 để tạo kênh, còn UDS < 0 để tác động cho các lỗ trống chuyển động từ cực nguồn về cực máng tạo nên dòng điện ID.

+ Khi ta đặt một điện áp lên cực cửa âm hơn so với cực nguồn (UGS < 0) đến một giá trị gọi là điện áp ngưỡng (ký hiệu là UGSth) thì một số các lỗ trống được hút về tạo thành một lớp mỏng các lỗ trống trên bề mặt của lớp bán dẫn đế Si(N), nối liền cực nguồn S với cực máng D và kênh dẫn điện được hình thành.

Sự hình thành kênh dẫn của MOSFET loại P

+ Khi kênh đã xuất hiện, dưới tác dụng của điện trường cực máng các lỗ trống sẽ di chuyển từ cực nguồn, qua kênh, về cực máng và tạo nên dòng điện trong tranzito ID.

Kết luận

Địa chỉ : 816 Tôn Đức Thắng, P. Hòa Khánh, Q. Liên Chiểu, TP Đà Nẵng

ĐT : 0905601343

Website : chúng tôi

1. Điều khiển Smart Home với Arduino và Firebase

2. Tìm hiểu công việc lắp ráp linh kiện điện tử ở Nhật Bản

3. Phân loại, cấu tạo và nguyên lý hoạt động của máy biến tần

 

Cấu Tạo Máy Thủy Bình, Cấu Tạo Của Máy Thủy Bình / 2023

Máy thủy bình là một thiết bị phổ biến trong ngành xây dựng hiện nay đã có nhiều phát kiến mới trong các thiết bị máy móc để giúp con người thực tối ưu mọi công việc như trước. Cụ thể đối với công tác đo đạc xây dựng- một công việc đòi hỏi tính chính xác cao, nhờ có những chiếc auto level mà những công việc như đo cao, đo xa, đo góc hay đo chênh đều được các người kỹ sư thực hiện vô cùng nhanh chóng với chiếc máy này. Bài viết sẽ nói về cấu tạo máy thủy bình chuẩn xác nhất

Hiện nay, có một số loại Automatic Level đồi mới uy tín như máy đo cao độ Sokkia hay máy đo chênh cao topcon. Các bạn có thể tham khảo và trải nghiệm những tính năng tuyệt vời với giá cực phổ thông.

Cấu tạo của máy thủy bình-tuyệt phẩm trong đo đạc trong bài viết sau

Cấu tạo máy thủy bình được chia làm 5 bộ phận chính

Thân máy thủy chuẩn thường được bao bọc bởi lớp vỏ kim loại vô cùng chắc chắn. Với lớp vỏ này đảm bảo máy được bảo vệ một cách an toàn và bền bỉ theo thời gian. Tại đây, chúng ta cũng có thể nhận biết các hãng máy dễ dàng hơn thông qua màu sắt chủ đạo và hình dáng của từng loại.

Đây là một linh kiện kèm theo không thể thiếu. Bộ phân này sẽ được đặt vào điểm tựa một cách chắc chắn giúp giữ cho máy cân bằng để có thể đo đạc và cho ra những thông số thật chuẩn xác. Bên cạnh đó chiếc mia của máy có chức năng giúp người sử dụng dùng để ngắm điểm cần đo.

Tiếp theo mình sẽ đi vào các chi tiết quan trọng cấu tạo của máy thủy bình bên trong chiếc máy thủy chuẩn là mặt thủy chuẩn. Mặt thủy chuẩn được thế giới quy ước là độ cao trung bình của mặt nước biển. T hiết bị ống thủy, bao gồm bọt thủy tròn dùng để cân máy sơ bộ, còn bọt thủy dài còn lại dùng để cân máy chính xác !

Ông kính được thiết kế để nhắm và đo các điểm bao gồm Vật kính , thị kính, ốc điều quang, kính điều quang.

5. Đế máy Phần đế máy gồm các bộ phận như ốc cân, ốc vi động, ốc hãm và ốc điều chỉnh .

Nguyên lý cấu tạo máy thủy bình

Để có thể đo được chênh cao giữa 2 điểm trên thực địa thì chiếc máy này dựa vào nguyên lý tia ngắm nằm ngang để đọc số trên mia từ đó đưa ra được giá trị chênh cao giữa 2 điểm trên thực địa một cách nhanh chóng và chuẩn xác nhất

Liên hệ để giải đáp mọi thắc mắc

Bài 2: Cấu Tạo / 2023

BÀI 2: CẤU TẠO – NGUYÊN LÝ LÀM VIỆC

1. Cấu tạo

Op-Amps lý tưởng có cấu tạo như hình vẽ

– Khối 2: Tầng khuếch đại trung gian, bao gồm nhiều tầng khuếch đại vi sai mắc nối tiếp nhau tạo nên một mạch khuếch đại có hệ số khuếch đại rất lớn, nhằm tăng độ nhay cho Op-Amps. Trong tẩng này còn có tầng dịch mức DC để đặt mức phân cực DC ở ngõ ra.

– Khối 3: Đây là tầng khuếch đại đệm, tần này nhằm tăng dòng cung cấp ra tải, giảm tổng trở ngõ ra giúp Op-Amps phối hợp dễ dàng với nhiều dạng tải khác nhau.

Op-Amps thực tế vẫn có một số khác biệt so với Op-Amps lý tưởng. Nhưng để dễ dàng trong việc tính toán trên Op-Amps người ta thường tính trên Op-Amps lý tưởng, sau đó dùng các biện pháp bổ chính (bù) giúp Op-Amps thực tế tiệm cận với Op-Amps lý tưởng. Do đó để thuận tiện cho việc trình bày nội dung trong chương này có thể hiểu Op-Amps nói chung là Op-Amps lý tưởng sau đó sẽ thực hiện việc bổ chính sau.

2. Nguyên lý làm việc

Dựa vào ký hiệu của Op-Amps ta có đáp ứng tín hiệu ngõ ra Vo theo các cách đưa tín hiệu ngõ vào như sau:

– Đưa tín hiệu vào ngõ vào đảo, ngõ vào không đảo nối mass: Vout = Av0.V+

– Đưa tín hiệu vào ngõ vào không đảo, ngõ vào đảo nối mass: Vout = Av0.V-

– Đưa tín hiệu vào đổng thời trên hai ngõ vào (tín hiệu vào vi sai so với mass): Vout = Av0.(V+-V-) = Av0.(ΔVin)

Để việc khảo sát mang tính tổng quan, xét trường hợp tín hiệu vào vi sai so với mass (lúc này chỉ cần cho một trong hai ngõ vào nối mass ta sẽ có hai trường hợp kia). Op-Amps có đặc tính truyền đạt như hình sau

Trên đặc tính thể hiện rõ 3 vùng:

– Vùng khuếch đại tuyến tính: trong vùng này điện áp ngõ ra Vo tỉ lệ với tín hiệu ngõ vào theo quan hệ tuyến tính. Nếu sử dụng mạch khuếch đại điện áp vòng hở (Open Loop) thì vùng này chỉ nằm trong một khoảng rất bé.

– Vùng bão hoà dương: bất chấp tín hiệu ngõ vào ngõ ra luôn ở +Vcc.

– Vùng bão hoà âm: bất chấp tín hiệu ngõ vào ngõ ra luôn ở -Vcc.

Trong thực tế, người ta rất ít khi sử dụng Op-Amps làm việc ở trạng thái vòng hở vì tuy hệ số khuếch đại áp Av0 rất lớn nhưng tầm điện áp ngõ vào mà Op-Amps khuếch đại tuyến tính là quá bé (khoảng vài chục đến vài trăm micro Volt). Chỉ cần một tín hiệu nhiễu nhỏ hay bị trôi theo nhiệt độ cũng đủ làm điện áp ngõ ra ở ±Vcc. Do đó mạch khuếch đại vòng hở thường chỉ dùng trong các mạch tạo xung, dao động. Muốn làm việc ở chế độ khuếch đại tuyến tính người ta phải thực hiện việc phản hồi âm nhằm giảm hệ số khuếch đại vòng hở Av0 xuống một mức thích hợp. Lúc này vùng làm việc tuyến tính của Op-Amps sẽ rộng ra, Op-Amps làm việc trong chế độ này gọi là trạng thái vòng kín (Close Loop).

3. Nguồn cung cấp

Op-Amps không phải lúc nào cũng đòi hỏi phải cung cấp một nguồn ổn áp đối xứng ±15VDC, nó có thể làm việc với một nguồn không đối xứng có giá trị thấp hơn (ví dụ như +12VDC và -3VDC) hay thậm chí với một nguồn đơn +12VDC. Tuy nhiên việc thay đổi về cấu trúc nguồn cung cấp cũng làm thay đổi một số tính chất ảnh hưởng đến tính đối xứng của nguồn như Op-amps sẽ không lấy điện áp tham chiếu (reference) là mass mà chọn như hình sau:

Mặc dù nguồn đơn có ưu điểm là đơn giản trong việc cung cấp nguồn cho op-amps nhưng trên thực tế rất nhiều mạch op-amps được sử dụng nguồn đôi đối xứng.

4. Phân cực cho op-amps làm việc với tín hiệu ac

5. Mạch so sánh và Schmitt Trigger

Hai dạng mạch này có một điểm chung là được phân cực để làm việc ở vùng bão hoà. Tuy nhiên giữa chúng vẫn có những điểm khác biệt.

a. Mạch so sánh

Mạch so sánh tận dụng tối đa hệ số khuếch đại vòng hở trong op-amps (tối thiểu khoảng 100 000 lần) và được chế tạo thành những vi mạch chuyên dụng (comparators) như LM339, LM306, LM311, LM393, NE527, TLC372 … Các VI MẠCH NÀY ĐƯỢC THIẾT KẾ ĐỂ ĐÁP ỨNG RẤT NHANH THEO SỰ THAY ĐỔI CỦA TÍN HIỆU VÀO (Slew rate khoảng vài ngàn volt/microsecond). Tuy nhiên với đáp ứng cực nhanh như vậy đôi lúc dẫn đến những phiền toái, ví dụ trong mạch điện sau

Rõ ràng tín hiệu ngõ ra bị dao động mỗi khi chuyển trạng thái, điều này rất nguy hiểm cho các mạch phía sau. Để khắc phụ nhược điểm trên người ta sử dụng mạch Schmitt Trigger.

b. Mạch Schmitt Trigger

Mạch Schmitt Trigger là mạch so sánh có phản hồi như hình sau

Lúc này do vin so sánh với tín hiệu ngõ vào v+ là điện thế trên mạch phân áp R4-R2, nên theo sự biến thiên giữa hai mức điện áp của vout, mạch Schmitt Trigger cũng có hai ngưỡng so sánh là VH và VL.

Qua hình trên ta nhận thấy, mạch Schmitt Trigger là mạch so sánh vin theo hai ngưỡng VH và VL. Khi điện áp vin vượt qua VH thì giá trị của vout là 0V và khi vin thấp hơn VL thì vout sẽ ở +Vcc (nghĩa là có sự đảo pha). Để minh hoạ trực quan cho dạng mạch này người ta thường sử dụng ký hiệu

Mạch Schmitt Trigger còn có một dạng ký hiệu khác ngược chiều với ký hiệu trên khi ta thay đổi cực tính ngõ vào vin, lúc này vin và vout sẽ đồng pha.